star_border star_border star_border star_border star_border
In this course we will demonstrate how a large-scale quantum processor could be built using these qubits. Among the topics that we will discuss are micro-architectures, compilers, and programming languages. The course will also cover some of the basics of quantum error-correction, an essential procedure that allows us to combat errors that arise during computations using delicate qubits. To complete the story arc from the hardware of quantum computers to their software, the course will discuss the main factors that triggered the efforts to build quantum computers in the first place: quantum algorithms. The course then concludes with a discussion on the quantum internet: what is it? How can it be built? Why is it useful? The course is a journey of discovery, so we encourage you to bring your own experiences, insights and thoughts via the forum! This course is authored by experts from the QuTech research center at Delft University of Technology. In the center, scientists and engineers work together to enhance research and development in quantum technology. QuTech Academy’s aim is to inspire, share and disseminate knowledge about the latest developments in quantum technology.
    star_border star_border star_border star_border star_border
    How can we study the Universe we live in using the only available information it provides us with: light ? This course provides an overview of the physical phenomena at play in the astronomical objects surrounding us, from planets and stars to the cosmic filaments, from galaxies such as our own Milky Way to large galaxy clusters. The course emphasizes the links between theoretical predictions and observations. In this course, you will learn the basics of astrophysics using simplified mathematical developments. In particular, you will learn the role played by gravity in astrophysics, including gravitational lensing, and how matter and radiation interact. The material in this course is essential to follow more advanced astrophysics courses.
      star_border star_border star_border star_border star_border
      The motion of falling leaves or small particles diffusing in a fluid is highly stochastic in nature. Therefore, such motions must be modeled as stochastic processes, for which exact predictions are no longer possible. This is in stark contrast to the deterministic motion of planets and stars, which can be perfectly predicted using celestial mechanics. This course is an introduction to stochastic processes through numerical simulations, with a focus on the proper data analysis needed to interpret the results. We will use the Jupyter (iPython) notebook as our programming environment. It is freely available for Windows, Mac, and Linux through the Anaconda Python Distribution. The students will first learn the basic theories of stochastic processes. Then, they will use these theories to develop their own python codes to perform numerical simulations of small particles diffusing in a fluid. Finally, they will analyze the simulation data according to the theories presented at the beginning of course. At the end of the course, we will analyze the dynamical data of more complicated systems, such as financial markets or meteorological data, using the basic theory of stochastic processes.
        star_border star_border star_border star_border star_border
        Interested in exploring the deadliest and most mysterious parts of our universe? Or, investigating black holes, which warp the very fabric of space-time around them? We will look at what we know about these objects, and also at the many unsolved mysteries that surround them. We will also study white-dwarf stars and neutron stars, where the mind-bending laws of quantum mechanics collide with relativity. And, examine dwarf novae, classical novae, supernovae and even hypernovae: the most violent explosions in the cosmos. This course is designed for people who would like to get a deeper understanding of astronomy than that offered by popular science articles and television shows.You will need reasonable high-school level Maths and Physics to get the most out of this course. This is the third of four ANUx courses which together make up the Australian National University's first year astrophysics program. It follows on from a course on the Greatest Unsolved Mysteries of the Universe, and a course on exoplanets. It is not necessary to have done the previous courses first: all necessary background material is repeated here. It is followed by a course on cosmology. These courses compromise the Astrophysics XSeries . Learn more about the XSeries program and register for all the courses in the series today!
          star_border star_border star_border star_border star_border
          This three-module sequence of courses covers advanced topics in quantum computation and quantum information, including quantum error correction code techniques; efficient quantum computation principles, including fault-tolerance; and quantum complexity theory and quantum information theory. Prior knowledge of quantum circuits and elementary quantum algorithms is assumed. These courses are the second part in a sequence of two quantum information science subjects at MIT. The three modules comprise: 8.371.1x : Quantum states, noise and error correction 8.371.2x: Efficient quantum computing - fault tolerance and complexity 8.371.3x : Advanced quantum algorithms and information theory This second 8.371.2x course module will cover in depth the methods of fault-tolerant quantum computation; the concept of quantum supremacy, and quantum algorithms at scale. A prior course (or strong background) in quantum mechanics is required.  Knowledge of linear algebra is also strongly recommended, and other helpful math topics to know include probability and finite fields. This course has been authored by one or more members of the Faculty of the Massachusetts Institute of Technology. Its educational objectives, methods, assessments, and the selection and presentation of its content are solely the responsibility of MIT. For more information about MIT’s Quantum Curriculum, visit quantumcurriculum.mit.edu .
            star_border star_border star_border star_border star_border
            Super-Earths And Life is a course about life on Earth, alien life, how we search for life outside of Earth, and what this teaches us about our place in the universe. In the past decade astronomers have made incredible advances in the discovery of planets outside our solar system. Thirty years ago, we knew only of the planets in our own solar system. Now we know of thousands circling nearby stars. Meanwhile, biologists have gained a strong understanding of how life evolved on our own planet, all the way back to the earliest cells. We can describe how simple molecules can assemble themselves into the building blocks of life, and how those building blocks might have become the cells that make up our bodies today. Super-Earths And Life is all about how these fields, astronomy and biology, together with geology, can help answer one of our most powerful and primal questions: are we alone in the universe? HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code: https://www.edx.org/edx-terms-service . HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs. HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement: http://harvardx.harvard.edu/research-statement to learn more. Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact [email protected] and/or report your experience through the edX contact form: https://www.edx.org/contact-us .
              star_border star_border star_border star_border star_border
              Are you interested in investigating materials and their properties with unsurpassed accuracy and fidelity? Synchrotrons and XFELs (X-ray free-electron lasers) are considered to be Science’s premier microscopic tools. They're used in scientific disciplines as diverse as molecular biology, environmental science, cultural heritage, catalytical chemistry, and studies of the electronic properties of novel materials - to name but a few examples. This course provides valuable insights into this broad spectrum of scientific disciplines, from the generation of x-rays - via a description of the machines that produce intense x-ray sources - to modern experiments performed using these facilities.
                star_border star_border star_border star_border star_border
                Knowing the geometrical structure of the molecules around us is one of the most important and fundamental issues in the field of chemistry. This course introduces the two primary methods used to determine the geometrical structure of molecules: molecular spectroscopy and gas electron diffraction. In molecular spectroscopy, molecules are irradiated with light or electric waves to reveal rich information, including: Motions of electrons within a molecule (Week 1), Vibrational motions of the nuclei within a molecule (Week 2), and Rotational motions of a molecule (Week 3). In the gas electron diffraction method, molecules are irradiated with an accelerated electron beam. As the beam is scattered by the nuclei within the molecule, the scattered waves interfere with each other to generate a diffraction pattern. In week 4, we study the fundamental mechanism of electron scattering and how the resulting diffraction images reveal the geometrical structure of molecules. By the end of the course, you will be able to understand molecular vibration plays an important role in determining the geometrical structure of molecules and gain a fuller understanding of molecular structure from the information obtained by the two methodologies. FAQ Do I need to buy a textbook? No, you can learn the contents without any textbooks. However, if you hope to learn more on the subjects treated in this course, you are recommended to read the textbook introduced below: Kaoru Yamanouchi, “Quantum Mechanics of Molecular Structures,” Springer-Verlag, 2012.
                  star_border star_border star_border star_border star_border
                  This three-module sequence of courses covers advanced topics in quantum computation and quantum information, including quantum error correction code techniques; efficient quantum computation principles, including fault-tolerance; and quantum complexity theory and quantum information theory. Prior knowledge of quantum circuits and elementary quantum algorithms is assumed. These courses are the second part in a sequence of two quantum information science subjects at MIT. The three modules comprise: 8.371.1x : Quantum states, noise and error correction 8.371.2x : Efficient quantum computing - fault tolerance and complexity 8.371.3x: Advanced quantum algorithms and information theory This third 8.371.3x course module draws upon quantum complexity and quantum information theory, to cover in depth advanced quantum algorithms and communication protocols, including Hamiltonian simulation, the hidden subgroup problem, linear systems, and noisy quantum channels. A prior course (or strong background) in quantum mechanics is required. Knowledge of linear algebra is also strongly recommended, and other helpful math topics to know include probability and finite fields. This course has been authored by one or more members of the Faculty of the Massachusetts Institute of Technology. Its educational objectives, methods, assessments, and the selection and presentation of its content are solely the responsibility of MIT. For more information about MIT’s Quantum Curriculum, visit quantumcurriculum.mit.edu .
                    star_border star_border star_border star_border star_border
                    In this physics course, you will learn about the structure and function of our universe, from the micro-world of quantum fields and atoms up to the mega-world of stars and galaxies. You will learn about the objective laws governing the physical world and about methods, provided mainly by physics, which allow us to obtain such knowledge. This course is taught by the National Research Nuclear University MEPhI, one of the world leaders in nuclear science and education. Our hope is that this course will help boost your curiosity and positively influence or even help to determine your future professional career. This course is for anyone is who is curious about how our world is constructed and wants to learn more about our universe and the nature surrounding us. Knowledge of physics and mathematics is NOT required. Basic school level will be quite enough.