star_border star_border star_border star_border star_border
Despite spectacular recent progress, there is still a lot we don't know about our universe. We don't know why the Big Bang happened. We don't know what most of the universe is made of. We don't know whether there is life in space. We don't know how planets form, how black holes get so big, or where the first stars have gone. This course will take you through nine of the greatest unsolved problems of modern astrophysics. We can't promise you the answers, but we will explain what we do and don't know, and give you an up-to-date understanding of current research. This course is designed for people who would like to get a deeper understanding of these mysteries than that offered by popular science articles and shows. This is the first of four ANUx courses which together make up the Australian National University's first year astrophysics program. It is followed by courses on exoplanets, on the violent universe, and on cosmology. These courses compromise the Astrophysics XSeries . Learn more about the XSeries program and register for all the courses in the series today!
    star_border star_border star_border star_border star_border
    PHYS 102x serves as an introduction to electricity and magnetism, following the standard second semester college physics sequence. Part 2 begins with the nature of the magnetic field and how it is created by current distributions and magnetic materials. Next, Faraday’s law of induction is described, as well as some of its applications and interesting effects. Finally, inductors and AC circuits are covered, including RLC circuits, reactances of circuit elements, and resonance. PHYS 102.2x consists of 5 weekly learning sequences, each with ~1.5 hours of video lectures, conceptual lecture problems, and online homework questions. The course concludes with an online exam during the 6th week.
      star_border star_border star_border star_border star_border
      Gain a wide view on the physics of light interaction with metal nanostructures. In this course, you will learn about thewhole diversity of unique effects appearing at the junction of nanotechnology, subwavelength optics, quantum mechanics, and solid state physics. You will find out how giant field enhancement near metallic nanostructures can be used for detecting single biomolecule, and whether it is possible to build a nanometer scale laser. Within the framework of the course, we will discuss in details the fundamental principles of light interaction with plasma oscillations in solid state. By passing our course you will: step-by-step learn the field of plasmonics starting from optical properties of metals to the latest applications of plasmonic nanostructures get the minimal theoretical background, which will be illustrated and supported by the describing experimental techniques and discussing the cutting edge scientific results. get a hands-on experience on how to describe the plasmons in various nanostructures such as single metallic nanoparticles, nanoparticle oligomers and periodic arrays, plasmonic waveguides and wires. In the final part of the course, you will have an overview of application of plasmonics in chemical biosensing, nanolasing, light trapping, and optomechanical control. The course is divided into five sections: Electromagnetic properties of metals Surface plasmon-polaritons Localized surface plasmon resonances Bulk plasmon-polaritons Applications of plasmonics This course is aimed for graduate and undergraduate students who are majoring in physics and engineering science related to optics. As well as researchers who want to gain or deepen their knowledge in the field of modern photonics.This course can give a boost to your educational or academic career, and potentially will stimulate you to conduct your own research in this field.
        star_border star_border star_border star_border star_border
        Every day, we see concrete used all around us – to build our houses, offices, schools, bridges, and infrastructure. But few people actually understand what gives concrete its strength, resistance, and utility. The aim of this course is to offer basic cement chemistry to practitioners, as well as new students in the fields of chemistry and engineering. You will learn how cement is made and hydrated, as well as the environmental and economical benefits it offers. You’ll learn to test your samples in isocalorimetry in order to track the hydration and to prepare and observe samples by scanning electron microscopy. In the last two weeks of the course, you will also learn how X-ray diffraction works and how to apply it to cements. Because the course is designed for beginning students, it’s not necessary to have a cement background, however a bachelor degree in Materials Science or knowledge in chemistry, physics and crystallography will help. This course starts with basics of cement, and progressively covers the latest advances in the understanding of cement hydration. This course lasts 6 weeks, during which you can take theoretical courses and tutorials to test the cement in the laboratory.
          star_border star_border star_border star_border star_border
          Super-Earths And Life is a course about life on Earth, alien life, how we search for life outside of Earth, and what this teaches us about our place in the universe. In the past decade astronomers have made incredible advances in the discovery of planets outside our solar system. Thirty years ago, we knew only of the planets in our own solar system. Now we know of thousands circling nearby stars. Meanwhile, biologists have gained a strong understanding of how life evolved on our own planet, all the way back to the earliest cells. We can describe how simple molecules can assemble themselves into the building blocks of life, and how those building blocks might have become the cells that make up our bodies today. Super-Earths And Life is all about how these fields, astronomy and biology, together with geology, can help answer one of our most powerful and primal questions: are we alone in the universe? HarvardX requires individuals who enroll in its courses on edX to abide by the terms of the edX honor code: https://www.edx.org/edx-terms-service . HarvardX will take appropriate corrective action in response to violations of the edX honor code, which may include dismissal from the HarvardX course; revocation of any certificates received for the HarvardX course; or other remedies as circumstances warrant. No refunds will be issued in the case of corrective action for such violations. Enrollees who are taking HarvardX courses as part of another program will also be governed by the academic policies of those programs. HarvardX pursues the science of learning. By registering as an online learner in an HX course, you will also participate in research about learning. Read our research statement: http://harvardx.harvard.edu/research-statement to learn more. Harvard University and HarvardX are committed to maintaining a safe and healthy educational and work environment in which no member of the community is excluded from participation in, denied the benefits of, or subjected to discrimination or harassment in our program. All members of the HarvardX community are expected to abide by Harvard policies on nondiscrimination, including sexual harassment, and the edX Terms of Service. If you have any questions or concerns, please contact [email protected] and/or report your experience through the edX contact form: https://www.edx.org/contact-us .
            star_border star_border star_border star_border star_border
            Are you interested in investigating materials and their properties with unsurpassed accuracy and fidelity? Synchrotrons and XFELs (X-ray free-electron lasers) are considered to be Science’s premier microscopic tools. They're used in scientific disciplines as diverse as molecular biology, environmental science, cultural heritage, catalytical chemistry, and studies of the electronic properties of novel materials - to name but a few examples. This course provides valuable insights into this broad spectrum of scientific disciplines, from the generation of x-rays - via a description of the machines that produce intense x-ray sources - to modern experiments performed using these facilities.
              star_border star_border star_border star_border star_border
              Knowing the geometrical structure of the molecules around us is one of the most important and fundamental issues in the field of chemistry. This course introduces the two primary methods used to determine the geometrical structure of molecules: molecular spectroscopy and gas electron diffraction. In molecular spectroscopy, molecules are irradiated with light or electric waves to reveal rich information, including: Motions of electrons within a molecule (Week 1), Vibrational motions of the nuclei within a molecule (Week 2), and Rotational motions of a molecule (Week 3). In the gas electron diffraction method, molecules are irradiated with an accelerated electron beam. As the beam is scattered by the nuclei within the molecule, the scattered waves interfere with each other to generate a diffraction pattern. In week 4, we study the fundamental mechanism of electron scattering and how the resulting diffraction images reveal the geometrical structure of molecules. By the end of the course, you will be able to understand molecular vibration plays an important role in determining the geometrical structure of molecules and gain a fuller understanding of molecular structure from the information obtained by the two methodologies. FAQ Do I need to buy a textbook? No, you can learn the contents without any textbooks. However, if you hope to learn more on the subjects treated in this course, you are recommended to read the textbook introduced below: Kaoru Yamanouchi, “Quantum Mechanics of Molecular Structures,” Springer-Verlag, 2012.
                star_border star_border star_border star_border star_border
                This three-module sequence of courses covers advanced topics in quantum computation and quantum information, including quantum error correction code techniques; efficient quantum computation principles, including fault-tolerance; and quantum complexity theory and quantum information theory. Prior knowledge of quantum circuits and elementary quantum algorithms is assumed. These courses are the second part in a sequence of two quantum information science subjects at MIT. The three modules comprise: 8.371.1x : Quantum states, noise and error correction 8.371.2x : Efficient quantum computing - fault tolerance and complexity 8.371.3x: Advanced quantum algorithms and information theory This third 8.371.3x course module draws upon quantum complexity and quantum information theory, to cover in depth advanced quantum algorithms and communication protocols, including Hamiltonian simulation, the hidden subgroup problem, linear systems, and noisy quantum channels. A prior course (or strong background) in quantum mechanics is required. Knowledge of linear algebra is also strongly recommended, and other helpful math topics to know include probability and finite fields. This course has been authored by one or more members of the Faculty of the Massachusetts Institute of Technology. Its educational objectives, methods, assessments, and the selection and presentation of its content are solely the responsibility of MIT. For more information about MIT’s Quantum Curriculum, visit quantumcurriculum.mit.edu .
                  star_border star_border star_border star_border star_border
                  This is the fourth of a series of four modules that cover calculus-based mechanics. You will explore simple harmonic motion through springs and pendulums. This short course will culminate in the ability to use the Taylor Formula to approximate a variety of other situations as simple harmonic motion. The modules are based on material in MIT's Physics I, which is required for all MIT undergraduates, and is being offered as an XSeries on edX. Please visit the Introductory Mechanics XSeries Program Page to learn more and to enroll in all four modules. To understand the material in this course you should have taken Mechanics: Kinematics and Dynamics , Mechanics: Momentum and Energ y, and Mechanics: Rotational Dynamics .
                    star_border star_border star_border star_border star_border
                    From February 3 to May 28, 2020, we are offering Effective Field Theory in a Live Archive format. This means that the course features and materials will once again all be available, staff will engage with learners in the discussion forum, and there will be updates to the course content. ----------------- 8.EFTx is an online version of MIT's graduate Effective Field Theory course. The course follows the MIT on-campus class 8.851 as it was given by Professor Iain Stewart in the Fall of 2013, and includes his video lectures, resource material on various effective theories, and a series of problems to facilitate learning the material. Anyone can register for the online version of the course. When the course is being taught on campus, students at MIT or Harvard may also register for 8.851 for course credit. Effective field theory (EFT) provides a fundamental framework to describe physical systems with quantum field theory. In this course you will learn both how to construct EFTs and how to apply them in a variety of situations. We will cover the majority of the common tools that are used by different effective field theories. In particular: identifying degrees of freedom and symmetries, formulating power counting expansions (both dimensional and non-dimensional), field redefinitions, bottom-up and top-down effective theories, fine-tuned effective theories, matching and Wilson coefficients, reparameterization invariance, and various examples of advanced renormalization group techniques. Examples of effective theories we will cover are the Standard Model as an effective field theory, integrating out the massive W, Z, Higgs, and top, chiral perturbation theory, non-relativistic effective field theories including those with a large scattering length, static sources and Heavy Quark Effective Theory (HQET), and a theory for collider physics, the Soft-Collinear Effective Theory (SCET). Course Flow Since this is an advanced graduate physics course, you will find that self-motivation and interaction with others is essential to learning the material. The purpose of the online course is to set you up with a foundation, to teach you to speak the language of EFT, and to connect you with other students and researchers that are interested in learning or broadening their exposure to this subject. Each week you will complete automatically graded homework problems to test your understanding and to help you master the material. You are expected to discuss the homework with other people in the class, but your online responses must be done individually. To facilitate these interactions there will be a forum for student-to-student discussions, with threads to cover different topics, and moderators with experience in this field. Student learning and discussions will also be prompted by questions posed after each lecture topic. There will be no tests or final exam, but at the end of the course each student will give a 30-minute presentation on an EFT topic of their choosing. The subject of effective field theory is rich and diverse, and far broader than we will be able to cover in a single course. The presentations will create an opportunity for you to learn about additional subjects beyond those in lecture from your fellow students. To facilitate this learning opportunity, each student will be required to watch and grade five presentations from among their fellow students. Since this is a graduate course, we anticipate that learning the subject and having the 8.EFTx materials available as an online resource will be more valuable to most of you than obtaining a grade. Therefore anyone who registers for the course will be able to retain access to the course materials after the course has ended. Note that when the course is archival mode that the problems can be attempted and checked in the same manner as when the course was running.