star_border star_border star_border star_border star_border
Structure – or the arrangement of materials’ internal components – determines virtually everything about a material:  its properties, its potential applications, and its performance within those applications.  This course is the first in a three-part series from MIT’s Department of Materials Science and Engineering that explores the structure of a wide variety of materials with current-day engineering applications. Taken together, these three courses provide similar content to MIT’s sophomore-level materials structure curriculum. Part 1 begins with an introduction to amorphous materials.  We explore glasses and polymers, learn about the factors that influence their structure, and learn how materials scientists measure and describe the structure of these materials. Then we begin a discussion of the crystalline state, exploring what it means for a material to be crystalline, how we describe periodic arrangement of atoms in a crystal, and how we can determine the structure of crystals through x-ray diffraction. If you would like to explore the structure of materials further, we encourage you to enroll in Part 2 and Part 3 of the course. Photo by User: Bill Burris on Flickr. (CC BY-SA) 2.0
    star_border star_border star_border star_border star_border
    Organic electronic devices are quickly making their way into the commercial world, with innovative thin mobile devices, high-resolution displays, and photovoltaic cells. The future holds even greater potential for this technology, with an entirely new generation of ultra low-cost, lightweight and even flexible electronic devices, which will perform functions traditionally accomplished with much more expensive components based on conventional semiconductor materials, such as silicon. Learn more about this highly promising technology, which is based on small molecules and polymers, and how these materials can be implemented successfully in established (e.g., organic light-emitting devices (OLEDs), organic photovoltaic (OPV) devices) and emerging (e.g., thermoelectric (TE) generators) organic electronic modules. In this course, you will gain the ability to tie molecular transport phenomena with macroscopic device response such that you will be well-prepared to analyze, troubleshoot, and design the next generation of organic electronic materials and devices. This course has short lectures with quizzes, homework, and exams. This course is the latest nanoHUB-U project in a series offered is jointly funded by Purdue University and the NSF with the goal of transcending disciplines through short courses accessible to students in any branch of science or engineering.
      star_border star_border star_border star_border star_border
      Many natural and man-made structures can be modeled as assemblages of interconnected structural elements loaded along their axis (bars), in torsion (shafts) and in bending (beams). In this course you will learn to use equations for static equilibrium, geometric compatibility and constitutive material response to analyze structural assemblages. This course provides an introduction to behavior in which the shape of the structure is permanently changed by loading the material beyond its elastic limit (plasticity), and behavior in which the structural response changes over time (viscoelasticity). This is the second course in a 3-part series. In this series you will learn how mechanical engineers can use analytical methods and “back of the envelope” calculations to predict structural behavior.  The three courses in the series are: Part 1 – 2.01x: Elements of Structures. (Elastic response of Structural Elements: Bars, Shafts, Beams). Fall Term Part 2 – 2.02.1x Mechanics of Deformable Structures: Part 1. (Assemblages of Elastic, Elastic-Plastic, and Viscoelastic Bars in axial loading). Spring Term Part 3 – 2.02.2x Mechanics of Deformable Structures: Part 2. (Assemblages of bars, shafts, and beams. Multi-axial Loading and Deformation. Energy Methods). Summer Term These courses are based on the first subject in solid mechanics for MIT Mechanical Engineering students.  Join them and learn to rely on the notions of equilibrium, geometric compatibility, and constitutive material response to ensure that your structures will perform their specified mechanical function without failing.
        star_border star_border star_border star_border star_border
        In 3.072x: Symmetry, Structure, and Tensor Properties of Materials , you will study the underlying structures of materials and deepen your understanding of the relationship between the properties of materials and their structures. Topics include lattices, point groups, and space groups in both two and three dimensions; the use of symmetry in the tensor representation of crystal properties; and the relationship between crystalline structure and properties, including transport properties, piezoelectricity, and elasticity. Two course projects will allow students to explore their particular interests in greater depth. FAQ Who can register for this course? Unfortunately, learners from Iran, Sudan and the Crimea region of Ukraine will not be able to register for this course at the present time. While edX has received a license from the U.S. Office of Foreign Assets Control (OFAC) to offer courses to learners from Iran and Sudan our license does not cover this course. Separately, EdX has applied for a license to offer courses to learners in the Crimea region of Ukraine, but we are awaiting a determination from OFAC on that application. We are deeply sorry the U.S. government has determined that we have to block these learners, and we are working diligently to rectify this situation as soon as possible.
          star_border star_border star_border star_border star_border
          There is no doubt that technological innovation is one of the key elements driving human progress. However, new technologies also raise ethical questions, have serious implications for society and the environment and pose new risks, often unknown and unknowable before the new technologies reach maturity. They may even lead to radical disruptions. Just think about robots, self-driving vehicles, medical engineering and the Internet of Things. They are strongly dependent on social acceptance and cannot escape public debates of regulation and ethics. If we want to innovate, we have to do that responsibly. We need to reflect on –and include- our societal values in this process. This course will give you a framework to do so. The first part of the course focuses on ethical questions/framework and concerns with respect to new technologies. The second part deals with (unknown) risks and safety of new technologies including a number of qualitative and quantitative risk assessment methods. The last part of the course is about the new, value driven, design process which take into account our societal concerns and conflicting values. Case studies (ethical concerns, risks) for reflection and discussions during the course include – among others- the coronavirus, nanotechnology, self-driving vehicles, robots, AI, big data & health, nuclear energy and CO2 capture and coolants. Affordable (frugal) innovations for low-income groups and emerging markets are also covered in the course. You can test and discuss your viewpoint. The course is for all engineering students who are looking for a methodical approach to judge responsible innovations from a broader – societal- perspective.
            star_border star_border star_border star_border star_border
            In this engineering course you will learn how to analyze vaults (long-span roofs) from three perspectives: Efficiency = calculations of forces/stresses Economy = evaluation of societal context and cost Elegance = form/appearance based on engineering principles, not decoration We explore iconic vaults like the Pantheon, but our main focus is on contemporary vaults built after the industrial revolution. The vaults we examine are made of different materials, such as tile, reinforced concrete, steel and glass, and were created by masterful engineers/builders like Rafael Guastavino, Anton Tedesko, Pier Luigi Nervi, Eduardo Torroja, Félix Candela, and Heinz Isler. This course illustrates: how engineering is a creative discipline and can become art the influence of the economic and social context in vault design the interplay between forces and form The course has been created for a general audience—no advanced math or engineering prerequisites are needed.  This is the second of three courses on the Art of Structural Engineering, each of which are independent of each other. The course on bridges was launched in 2016, and another course will be developed on buildings/towers.
              star_border star_border star_border star_border star_border
              Have you ever wondered why ventilation helps to cool down your hot chocolate? Do you know why a surfing suit keeps you warm? Why iron feels cold, while wood feels warm at room temperature? Or how air is transferred into aqueous liquids in a water treatment plant? How can we sterilize milk with the least amount of energy? How does medicine spread in our tissue? Or how do we design a new cooling tower of a power plant? All these are phenomena that involve heat transfer, mass transfer or fluid flow. Transport Phenomena investigates such questions and many others, exploring a wide variety of applications ranging from industrial processes to environmental engineering, to transport processes in our own body and even simple daily life problems In this course we will look into the underlying concepts of these processes, that often take place simultaneously, and will teach you how to apply them to a variety of real-life problems. You will learn how to model the processes and make quantitative statements.
                star_border star_border star_border star_border star_border
                Electric vehicles are the future of transportation. Electric mobility has become an essential part of the energy transition, and will imply significant changes for vehicle manufacturers, governments, companies and individuals. If you are interested in learning about the electric vehicle technology and how it can work for your business or create societal impact, then this is the course for you. The experts of TU Delft, together with other knowledge institutes and companies in the Netherlands, will prepare you for upcoming developments amid the transition to electric vehicles. You'll explore the most important aspects of this new market, including state-of-the-art technology of electric vehicles and charging infrastructure; profitable business models for electric mobility; and effective policies for governmental bodies, which will accelerate the uptake of electric mobility. The course includes video lectures, presentations and exercises, which are all reinforced with real-world case studies from projects that were implemented in the Netherlands. The production of this course would not have been possible without the contributions of the Dutch Innovation Centre for Electric Road Transport (D-INCERT) and is taught by experts from both industry and academia, who share their knowledge and insights.
                  star_border star_border star_border star_border star_border
                  Have you wondered how something was manufactured? Do you want to learn what it takes to turn your design into a finished product at scale? This course introduces a wide range of manufacturing processes including machining, injection molding, casing, and 3D printing; and explains the fundamental and practical aspects of manufacturing at scale. For each process, 2.008x explains the underlying physical principles, provides several examples and demonstrations, and summarizes design for manufacturing principles. Modules are also included on cost estimation, quality and variation, and sustainability. New content added in 2020 includes multimedia examinations of product disassembly and select updated lecture videos. Together, the content will enable you to design a manufacturing process for a multi-part product, make quantitative estimates of cost and throughput, and recognize important constraints and tradeoffs in manufacturing processes and systems. The course concludes with a perspective on sustainability, digitization, and the worldwide trajectory of manufacturing.
                    star_border star_border star_border star_border star_border
                    Classical detectors and sensors are ubiquitous around us from heat sensors in cars to light detectors in a camera cell phone. Leveraging advances in the theory of noise and measurement, an important paradigm of quantum metrology has emerged. Here, ultra-precision measurement devices collect maximal information from the world around us at the quantum limit. This enables a new frontier of perception that promises to impact machine learning, autonomous navigation, surveillance strategies, information processing, and communication systems. Students in this in-depth course will learn the fundamentals about state-of-the-art quantum detectors and sensors. They will also learn about quantum noise and how it limits quantum devices. The primary goal of the course is to empower students with a critical and deep understanding of emerging applications at the quantum-classical boundary. This will allow them to adopt quantum detectors and sensors for their own endeavors.